"News about the USAP, the Ice, and the People"
United States Antarctic Program United States Antarctic Program Logo National Science Foundation Logo
 

People gather around hole in ice.
Photo Credit: Peter Rejcek
Sam Bowser, left, radios a team member at the New Harbor field camp before diver Danielle Woodward plunges through a hole in the sea ice while Hilary Hudson stands by to assist. Woodward is collecting forams, single-celled organisms that Bowser studies to answer questions about evolution. 

Evolutionary insight

New Harbor and forams may offer window into explosion of multicellular life a half-billion years ago

Print Entire Article

Explorers Cove, on the west side of McMurdo Sound, is the gateway to the Taylor Valley, one of the most intensely studied areas in Antarctica. The name itself is a sort of homage to the large number of people who have explored the area for more than a century.

For scientist Sam Bowser External Non-U.S. government site, the ice-covered cove is also a portal back in time to explore a period more than half a billion years ago when the dominance of single-celled organisms suddenly — at least in geologic time, as interpreted by the fossil record — ended with the rapid evolution of multicellular life.

Explorers Cove is a particularly good place to study the so-called Cambrian explosion thanks to the large number of “primitive” foraminifera species found on the seafloor at shallow depths, according to Bowser, a cell biologist with the New York State Department of Health’s External U.S. government site Wadsworth Center External Non-U.S. government site in Albany.

“If the present is the key to the past, and if the way the species behave today is comparable to how they behaved 540 million years ago … then [the forams] must have had an impact on how ancient lifeforms evolved,” said Bowser, who has studied the biology and biodiversity of the early-evolving, single-celled forams in Antarctica since 1984.

Flags fly over buildings.
Photo Credit: Peter Rejcek
New Harbor field camp.

“Without a time machine, you’re not certain about any of this stuff, but it gives us ideas,” he added.

Some of those ideas revolve around such evolutionary traits as building tests — or, as Bowser puts it, why a cell needs a shell — and how voracious forams might have shaped the emergence of more complex life. Certain species are as large as a BB pellet and capable of devouring a juvenile starfish.

“It’s a unique place where you have such a diversity of the single-chamber organisms,” said Jan Pawlowski External Non-U.S. government site, an associate professor at the University of Geneva External Non-U.S. government site who has worked with Bowser for a number of years on the Explorers Cove foram population. He is an expert in the molecular evolution and ecology of protists, which includes mostly unicellular or simple organisms.

“If you want to understand the evolution, how the animals evolved, we have to understand how the lineage leading up to animals evolved,” he said.

Forams typically blanket the deep ocean, thousands of meters below sea level. But cold-water conditions in Explorers Cove have created an ideal natural laboratory where the early-evolving species of forams thrive. More than 200 species are believed to exist in that part of McMurdo Sound, with at least 20 new species yet to be catalogued by Bowser and his colleagues.

Many of those species in Explorers Cove construct their shells by gluing together particles from the surrounding environment. Each species is very particular about the materials, even the size, of the chosen grains.

“How a cell is able to pick different types of particles from the environment, put them together in this type of a pattern, that’s something that’s just wild and crazy, and we still don’t understand it,” Bowser said.

The forams make use of countless pseudopodia, a “branching mass of writhing, seething cylinders,” which can autonomously move around and collect things, Bowser explained. Picture an octopus on a miniature scale, with numerous, wispy tentacles that scour the environment like a super-sticky conveyer belt.

A shell for the benthic, or seafloor, forams in Explorers Cove would give them a slight evolutionary advantage in collecting food, getting all of those little arms up away from the muddy surface to grab a passing bacterium or other bit of nutrient.

“This is a way to get food: You build a shell, and you tailor that shell to optimize your ability to capture food. I can’t think of a better driving force for the evolution of something,” Bowser said.1 2   Next