"News about the USAP, the Ice, and the People"
United States Antarctic Program United States Antarctic Program Logo National Science Foundation Logo
 

Two telescopes with sunset.
Photo Credit: Steffen Richter/BICEP
The sun sets behind BICEP2, foreground, and the South Pole Telescope at NSF's Amundsen-Scott South Pole Station. Scientists behind the BICEP2 telescope have detected a clear signal of cosmic inflation, one of the cornerstone theories of how the universe formed nearly 14 billion years ago.

Clear signal

Telescope at South Pole detects 'smoking gun' signature of cosmic inflation

Researchers with the BICEP2 External Non-U.S. government site collaboration announced this week that their telescope in Antarctica has allowed them to collect what they believe is the first direct evidence for cosmic inflation External U.S. government site.

Inflation is the cataclysmic event in which, in a fleeting fraction of a second following the Big Bang External U.S. government site, the infant universe expanded exponentially, stretching far beyond the view of the best telescopes.

Modern astronomy is built around the theory that almost 14 billion years ago, the universe burst into existence in an extraordinary event called the Big Bang, which was then followed by the superluminal inflation of space-time that created the current universe as we know it.

But until the BICEP results were announced, all of the scientific conjecture on inflation was built solely on a solid theoretical framework. Now, using data gathered by an National Science Foundation External U.S. government site-funded telescope located at the geographic South Pole, the collaboration has described what it says are the first direct, observational evidence of inflation.

Person working on computer in lab.
Photo Credit: Peter Rejcek
Physicist Justus Brevik works in the BICEP2 telescope control room in the Dark Sector Lab at the South Pole Station in this 2011 photo.

The findings, the collaboration’s researchers believe, also represent the first images of gravitational waves or ripples in space-time, and confirm a deep connection between quantum mechanics and general relativity. These waves have been described as the “first tremors of the Big Bang.”

“Detecting this signal is one of the most important goals in cosmology today. A lot of work by a lot of people has led up to this point,” said John Kovac External Non-U.S. government site of the Harvard-Smithsonian Center for Astrophysics External Non-U.S. government site, the leader of the BICEP2 collaboration, which is funded by the Division of Polar Programs External U.S. government site in NSF’s Geosciences Directorate External U.S. government site and NSF's Division of Astronomical Sciences External U.S. government site.

Through the Division of Polar Programs, NSF manages the U.S. Antarctic Program External U.S. government site, which coordinates all U.S. research on the southernmost continent and the complex logistics required to support the science.

The results were announced at a press conference at 11:55 a.m. Monday, March 17. A technical presentation preceded the press conference.

BICEP2 is the second stage of the NSF-funded collaborative program. Harvard University External Non-U.S. government site and the Keck Foundation External Non-U.S. government site also contributed funding for the construction of the team’s telescopes at Amundsen-Scott South Pole Station External U.S. government site, which is one of three year-round U.S. Antarctic Program research stations. [See previous article — Inflation at South Pole: New telescopes search universe for signs of rapid expansion after the Big Bang.]

In addition to Kovac, the NSF-funded principal investigators for the BICEP2 project are Clem Pryke External Non-U.S. government site of the University of Minnesota External Non-U.S. government site; Jamie Bock External Non-U.S. government site of the California Institute of Technology’s External Non-U.S. government site Jet Propulsion Laboratory External U.S. government site; and Chao-Lin Kuo External Non-U.S. government site of the Stanford Linear Accelerator Center External Non-U.S. government site.

Person examines instrument.
Photo Credit: Peter Rejcek/Antarctic Photo Library
Principal investigator John Kovac for BICEP2 works on a receiver for another telescope at the South Pole Station designed to look at cosmic inflation.

Other major collaborating institutions for BICEP2 include the University of California, San Diego External Non-U.S. government site; the University of British Columbia External Non-U.S. government site; the National Institute of Standards and Technology; the University of Toronto External Non-U.S. government site; Cardiff University External Non-U.S. government site; and France’s Commissariat à l'Energie Atomique External Non-U.S. government site.

In addition to NSF support for BICEP, NASA’s External U.S. government site Jet Propulsion Laboratory and the Moore Foundation External Non-U.S. government site supported the development of the ultra-sensitive detector arrays that made the measurements possible.

The team examined spatial scales on the sky spanning about one to five degrees (two to ten times the width of the full moon). They traveled to the South Pole Station to take advantage of the cold, dry, stable air over Antarctica’s polar plateau, which rises thousands of meters above sea level.

“The South Pole is the closest you can get to space and still be on the ground,” Kovac said. “It’s one of the driest and clearest locations on Earth, perfect for observing the faint microwaves from the Big Bang.” The groundbreaking results came from observations by the BICEP2 telescope of the cosmic microwave background (CMB) External U.S. government site – a faint glow left over from the Big Bang. Tiny fluctuations in this afterglow provide clues to conditions in the early universe.

For example, small differences in temperature across the sky show where parts of the universe were denser, eventually condensing into galaxies and galactic clusters.

Aurora shimmers over a building.
Photo Credit: Keith Vanderlinde/Antarctic Photo Library
An aurora shimmers above the South Pole Station building that held the BICEP2 telescope.

Since the CMB is a form of light, it exhibits all the properties of light, including polarization. On Earth, sunlight is scattered by the atmosphere and becomes polarized, which is why polarized sunglasses help reduce glare. In space, the CMB was scattered by atoms and electrons and became polarized, too.

“Our team hunted for a special type of polarization called ‘B-modes,’ which represents a twisting or ‘curl’ pattern in the polarized orientations of the ancient light,” Bock said.

Gravitational waves squeeze space as they travel, and this squeezing produces a distinct pattern in the CMB. Gravitational waves have a ‘handedness,’ much like light waves, and can have left- and right-handed polarizations.

“The swirly B-mode pattern is a unique signature of gravitational waves because of their handedness. This is the first direct image of gravitational waves across the primordial sky,” Kuo said.

The researchers were surprised to detect a B-mode polarization signal considerably stronger than many cosmologists expected. The team analyzed their data for more than three years in an effort to rule out any errors. They also considered whether dust in our galaxy could produce the observed pattern, but the data suggest this is highly unlikely.

“This has been like looking for a needle in a haystack, but instead we found a crowbar,” Pryke said.

Vladimir Papitashvili, the U.S. Antarctic Program’s Astrophysics and Geospace sciences program External U.S. government site director, said, “The South Pole is an excellent place for cosmic microwave background observations during the long, dark, and very cold winter. It reflects well on the NSF/USAP-supported BICEP team that they are now able to bring forward, for the first time, this long-awaited B-mode polarization signal so that their work can be examined by the broader astrophysics community.”

Asked to comment on the implications of this discovery, Harvard theorist Avi Loeb said, “This work offers new insights into some of our most basic questions: Why do we exist? How did the universe begin? These results are not only a smoking gun for inflation, they also tell us when inflation took place and how powerful the process was.”

Technical details and journal papers can be found on the BICEP2 release website External Non-U.S. government site. The BICEP2 results will be submitted to a peer-reviewed journal for publication.

back to top