"News about the USAP, the Ice, and the People"
United States Antarctic Program United States Antarctic Program Logo National Science Foundation Logo

The floor of Explorers Cove is alive with marine fauna.
Photo Credit: Steve Clabuesch/Antarctic Photo Library
Marine fauna abounds on the seafloor of Explorer's Cove, New Harbor, in McMurdo Sound. Fossil evidence of this benthic community is missing from the paleological record found in sediment cores, a puzzle that a team of scientists hopes to solve beginning this season.

Lost fossils

Multi-disciplinary project seeks clues to absence of benthic life in paleological record

Print Entire Article

The bottom of McMurdo Sound is teeming with life — from brittle stars to scallops to wildly diverse single-celled critters called foraminifera, many of which build hard body parts or shells out of calcium carbonate.

That’s the story today. But what happened in the ocean millions of years ago? That’s a hard question to answer. For some reason, there are few signs of these critters in the fossil records that geologists and other scientists study in sediment cores taken from below the seafloor.

“It’s almost like a disconnect from the life of today with the life of the past,” observed Molly Miller, a geology professor in the Department of Earth and Environmental Sciences at Vanderbilt University External Non-U.S. government site and one of the project’s principal investigators for the National Science Foundation External U.S. government site-funded study.

Unraveling the mystery is important for a number of reasons, including understanding the evolution of the Antarctic benthic ecosystem through the millennia. Yet the absence of the seafloor-hugging organisms is also of interest because many of them are calcifying animals that form shells and skeletons made of the calcium carbonate materials calcite or aragonite.

Scientists can use their fossilized remains to reconstruct things like past climate and ocean circulation. However, perhaps more importantly, understanding the conditions under which the remains of calcifying organisms dissolve will also help climate change scientists predict what might happen to the modern-day calcifiers, as the oceans become more acidic from absorbing atmospheric carbon dioxide.

Science divers prepare to make a dive in McMurdo Sound.
Photo Credit: Henry Kaiser/Antarctic Photo Library
Science divers prepare to enter the water in McMurdo Sound.

In addition, calcium carbonate material naturally dissolves faster in cold, polar waters — one of the key factors the scientists believe may have caused disruptions in the fossil record.

“In tropical zones, calcium carbonate should stick around for a while,” explained Sally Walker, a paleontologist from the University of Georgia in Athens External Non-U.S. government site who studies the process of fossilization. “In cold, polar conditions, you would think that calcium carbonate would rapidly dissolve. We do have a record of it in some of the cores, so we know it can fossilize in cooler conditions.”

In effect, while interested in the process of fossilization, an area of study called taphonomy, Walker, working with Miller and Sam Bowser External Non-U.S. government site from the New York State Department of Health’s Wadsworth Center External Non-U.S. government site in Albany, are also studying the conditions that destroy the remains of the marine animals and foraminifera, or forams External Non-U.S. government site, a group of creatures often used by micropaleontologists to study past climate conditions.

“To understand the fossilization process makes you realize this connection between the decay of calcium carbonate and how rapidly it can decay, and then how rapidly it can get into the chemical carbon cycle,” said Walker, a principal investigator for the project making her first trip to the Antarctic.

The scientists believe that in addition to the cold polar water, the ice-covered marine habitat may play a role in destroying the animal remains before they can fossilize. For example, perhaps advancing glaciers ground away shells and other material. Or as Walker put it, “We’re looking at the effects of ice on the fossil record of Antarctica.”

“This project is geobiology, an emerging field of science looking at the connections between biology and geology,” said Tom Wagner, program manager of Antarctic Earth Sciences External U.S. government site in the National Science Foundation’s Office of Polar Programs External U.S. government site, which is funding the research.

Unique collaboration

To put their theories to the test, the scientists will conduct a variety of experiments from a field camp at Explorers Cove in New Harbor. The camp, located across McMurdo Sound from the U.S. Antarctic Program’s McMurdo Station External U.S. government site, has been used for a number of seasons by Bowser and his team of science divers.

A cell biologist, Bowser studies forams and their place in the benthic food web. Another principal investigator on the project, Bowser is also interested in forams’ possible applications in area such as nanotechnology and biomedicine.

The collaboration is an interesting one. Bowser brings his general expertise in the local benthic ecology to the table, while Miller is an expert in bioturbation (the mixing and displacement of sediments by fauna) and Walker measures the rate of dissolution for the shell-secreting animals.

“Drill cores taken of sediments found on Antarctica’s continental shelves provide our most important records of deep-time climate change,” Wagner explained. “And they should be teeming with remnants of life from the sea bed but they aren’t. Why not?

“It’s important information because it would tell us about past ecosystems while providing another perspective on climate change,” he added. “It could be that they aren’t preserved, but it could also be that we just don't know how to interpret the records that we have. And that’s what makes this project so exciting — it could lead to a total reappraisal of Antarctica’s past.”

1 2 Next